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Abstract
In a magnetic nanopillar, microwave oscillations of the magnetization of one
magnetic layer can be driven by spin-polarized current emitted from another
magnetic layer. The conditions for this to occur in zero applied field are
formulated in terms of the two components of the spin-transfer torque. One
simple route to achieve microwave generation is to ensure that these components
have opposite sign. Quantum-mechanical calculations are presented that show
how this may be achieved by a suitable choice of the oscillating magnet
thickness.

1. Introduction

A typical magnetic nanopillar is essentially a trilayer system, with two magnetic layers
separated by a non-magnetic spacer layer. One magnetic layer (the polarizing layer) is thick
and its magnetization direction is assumed to be fixed. The second (switching) layer is thin
and its magnetization is free to rotate under the influence of various torques. The trilayer is
attached to external non-magnetic leads. We assume in this paper that the nanopillar cross-
section is small enough for the magnetic layers to be considered as single-domain, but large
enough for them to be treated as extended thin films. The torques acting on the switching
layer arise from an external magnetic field, anisotropy fields and the two components of spin
transfer torque which appear when a current passes through the trilayer [1]. We shall consider
the most common experimental situation, in which the magnetization of the polarizing magnet,
the in-plane uniaxial anisotropy axis in the switching magnet and the external field are all
collinear. The spin-transfer torque can be used to switch the magnetization of the switching
magnet between the parallel (P) and antiparallel (AP) orientations relative to the magnetization
of the polarizing magnet. The switching process relies on the scenario that when one of the
configurations (P or AP) becomes unstable, at a critical current, the other configuration is stable
and therefore available for switching into it. However, in the presence of an external field
larger than the coercive field of the switching magnet, it is found experimentally [2–5] that,
for a current greater than a critical value and with the correct sense, neither the P nor the AP
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configuration is stable. The magnetization of the switching magnet is then in continual motion
and becomes a source of microwave generation. Bertotti et al [6] have shown that the motion is
periodic, and that, near the instability, the frequency is just that of ferromagnetic resonance in
the given anisotropy and external fields. These authors consider only one component of spin-
transfer torque and an applied field is essential, in their model, for the precessional motion.
Edwards et al [1] predicted that a similar instability of both the P and AP configurations
can also appear in zero applied field when the two components of spin-transfer torque have
opposite signs. A nanoscale source of microwaves in zero applied field would certainly find
important applications. In section 2 of this paper we review the phenomenological theory of
this process [7] and in section 3 we show how detailed quantum-mechanical calculation of
spin-transfer torque may be used to design real systems with the desired behaviour.

2. Phenomenological theory

The equation of motion for the magnetization of the switching magnet is the Landau–Lifshitz–
Gilbert (LLG) equation,

dm

dt
+ γm × dm

dt
= Γ, (1)

where m is a unit vector in the direction of the switching magnet moment, γ is the Gilbert
damping parameter and Γ is the reduced total torque. In describing the switching magnet by a
unique unit vector m, we assume that it remains a uniformly magnetized single domain, and
this seems to be the case in many experiments [2–5]. To specify the torque Γ we introduce a
unit vector ez in the direction of the in-plane uniaxial anisotropy field Hu = Hu0(m · ez)ez

and a unit vector ey perpendicular to the layer planes. The reduced torque takes the form

Γ = Hu0{(m · ez)m × ez − h p(m ·ey)m × ey + vg‖(ψ)m
× (p × m)+ vg⊥(ψ)(m × p)}, (2)

where the relative strength of the easy plane anisotropy h p = Hp0/Hu0 and vg‖(ψ), vg⊥(ψ)
measure the strengths of the in-plane (Slonczewski) torque and the out-of-plane (effective
field) torque, respectively. p is a unit vector in the direction of the magnetization of the
polarizing magnet and ψ is the angle between m and p. The reduced bias voltage is defined
by v = eVb/(|〈Stot〉|Hu0), where 〈Stot〉 is the total spin angular momentum of the switching
magnet. The applied field has been taken as zero. The anisotropy field is in units of angular
frequency and must be multiplied by h̄/2μB = 5.69 × 10−12 to obtain the field in tesla. It is
convenient to define the magnitudes T‖ and T⊥ of the in-plane and out-of-plane spin-transfer
torques which appear in equation (2), expressed in units of eVb. Thus

T⊥ = g⊥(ψ) sinψ, T‖ = g‖(ψ) sinψ. (3)

In the situation considered here, with the polarizing magnet magnetized in the direction of the
in-plane uniaxial anisotropy axis in the switching magnet (p = ez), steady-state solutions
of equation (1) (given by Γ = 0) exist for m = ±p, correponding to the P and AP
configurations discussed in section 1. The stability of these states is easily investigated by
linearizing equation (1) about the steady state [7]. The stability conditions simplify when we
recognize that the Gibert damping parameter γ � 1 and that the easy plane anisotropy is much
larger than the uniaxial anisotropy (typically h p ≈ 100). The stability conditions for the P state
are

vg⊥(0) > −1, vg‖(0) > − 1
2γ h p (4)
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Figure 1. Stability diagram for hext = 0.

and for the AP state they are

vg⊥(π) < 1, vg‖(π) < 1
2γ h p. (5)

From equation (3) we note that

gi(0) = [dTi/dψ]ψ=0, gi(π) = −[dTi/dψ]ψ=π , i = ⊥, ‖ . (6)

Quantum-mechanical calculations (see section 3) show that both components of the spin-
transfer torque defined by equation (3) frequently have a sine-like dependence on angle ψ .
Hence g‖ and g⊥ are approximately constant and, in particular, we may assume that the
equations

g⊥(0) = g⊥(π) = g⊥, g‖(0) = g‖(π) = g‖ (7)

are approximately satisfied. In figure 1 we plot the regions of P and AP stability, assuming
that equation (7) holds. We also put r = g⊥/g‖. It is in the ‘both unstable’ regions that
persistent oscillations of the magnetization occur. A necessary condition for this behaviour,
with microwave generation in zero field, is clearly r < 0. This was first predicted by Edwards
et al [1] and found to occur for a Co/Cu/Co(111) system with the switching magnet consisting
of a Co monolayer. In that case the assumptions g⊥(0) = g⊥(π) and g‖(0) = g‖(π) are
satisfied quite well. Strong deviations from these relations will result in equations (4) and (5),
leading to different criteria. This zero-field behaviour can also be obtained in the absence of
the out-of-plane torque with a rather unusual angle dependence of the torque [8]. However, it is
not clear in general how this can be achieved. On the other hand, the conditions for obtaining
r < 0 are more easily investigated and, when this criterion, together with equation (7), is
satisfied, zero-field microwave generation can occur. In the next section we carry out such an
investigation by means of new quantum-mechanical calculations which, therefore, shed light
on the design of suitable structures for microwave generation in zero field.

3. Nanoscale engineering of the spin-transfer torque

In order to obtain the instability discussed at the end of section 2, we require that the
components T‖ and T⊥ of the spin-transfer torque have opposite signs. To engineer this
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Figure 2. Schematic picture of the magnetic layer structure.

(This figure is in colour only in the electronic version)

situation we need to investigate the factors that control the relative sign of T‖ and T⊥. The
spin-transfer torque is the difference between the spin current in the spacer, separating the
polarizing and switching magnets, and the spin current in the non-magnetic lead which is
attached to to the switching magnet. Here we shall focus our attention on the behaviour of
the spin current in the switching magnet, since it will be seen that this is the most important
factor governing the sign of T⊥. We have shown [1] that the local spin current in any part of
the layer structure shown schematically in figure 2 can be calculated rigorously using the non-
equilibrium Keldysh formalism. In particular, the Keldysh formalism [1] gives the spin current
between any two atomic planes n, n − 1 in the switching magnet (see figure 2) in terms of local
one-electron Green’s functions. We have also demonstrated [1] that the so-called standard
model approximation to the rigorous Keldysh formalism is a very good approximation for real
systems. Using the standard model [1], we have investigated the spin current in the switching
magnet for a single-orbital sc tight-binding band structure, assuming that the layers are parallel
to the (001) plane. A single-orbital tight-binding band allows us to vary the parameters of the
model and thus gain an insight into the behaviour of the spin current in the switching magnet.

The main role of the polarizing magnet is to produce a stream of spin-polarized electrons.
We have chosen the polarizing magnet to be just half metallic with the top of the majority-spin
band coinciding with the Fermi level. This results in 100% spin polarization and the situation
with only one spin-band occupied by holes is a reasonable approximation to cobalt. Strictly,
of course, cobalt is not a half metal, having a small but non-zero density of states at the Fermi
level in the majority-spin band. In all our calculations the polarizing magnet was taken to be
semi-infinite. The non-magnetic spacer layer and the semi-infinite non-magnetic lead attached
to the switching magnet were assumed to be made of the same material. We have taken the
spacer layer to contain 20 atomic planes since, for such thicknesses, the spin current becomes
essentially independent of the spacer thickness (in the ballistic limit that we consider).

There are two main parameters of the switching magnet that govern the behaviour of the
transverse spin current with components Jx , Jy , which determine the parallel and perpendicular
spin-transfer torques, respectively. The first parameter is the exchange splitting � between
the majority- and minority-spin bands. The second is the thickness of the switching magnet
N measured in atomic planes. We first show in figure 3(a) the dependence of the parallel
component (x-component in the notation of figure 2) of the local spin current on the position
in the layer structure for a switching magnet of 50 atomic planes (circles) and of 20 atomic
planes (squares). The angle between the magnetizations is taken as π/2. The Fermi level in
the switching magnet was chosen in this case to intersect both the majority- and minority-spin
bands, which models, for example, the situation in iron or permalloy. The spin current for the
first 20 atomic planes is that in the spacer where all the components of the spin current are
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Figure 3. Spatial dependence of the parallel (x) component of spin current (a) and perpendicular
(y) component (b) for a magnet with carriers of both spins.

naturally conserved. The results for the last 20 atomic planes correspond to the spin current
in the lead (in the case of the switching magnet of 50 atomic planes), which is also conserved.
Finally, the broken line connecting the values of the spin current in the spacer and in the lead
refers to the total spin current in the switching magnet. The significance of the total spin current
in the switching magnet will be discussed later. The corresponding position dependence of the
perpendicular spin current (y-component) is shown in figure 3(b).

A number of interesting features of the spin current in the switching magnet can be deduced
from figure 3. Firstly, both components of the spin current oscillate about zero as a function
of the position in the switching magnet. The oscillations of the parallel and perpendicular
components have approximately the same amplitude. In fact, a comparison of figures 3(a)
and (b) shows that the two oscillations are essentially just shifted in phase. The oscillations
decay very slowly with the distance from the spacer/switching magnet interface. The profile of
the oscillations is independent of the switching magnet thickness, i.e. the variation of the spin
current within the magnet of 20 atomic planes is virtually identical to that in the first 20 planes
of the magnet containing 50 atomic planes. Of equal importance is the fact that the amplitude of
spin current oscillations in the switching magnet is comparable to the value of the spin current
in the spacer layer itself. We recall that the spin-transfer torque is the difference between the
incoming and outgoing spin currents. Therefore, it can be seen from figure 3(b) that, simply
by selecting the appropriate thickness of the switching magnet, we can engineer the sign of the
perpendicular component of the spin-transfer torque. Similarly, it can be seen from figure 3(a)
that the magnitude, but not the sign, of the parallel component of the torque can be strongly
influenced by the choice of the switching magnet thickness.

The profile of the spin current across the layer structure we have determined should be
contrasted with the results of earlier calculations of Stiles and Zangwill [9] for a parabolic band
model and for a Cu/Co interface. They argue that in all cases there is a large discontinuity in
the spin current at the spacer/switching magnet interface and the amplitude of their calculated
oscillations of the spin current in the switching magnet is, therefore, only some 10% of the spin
current in the spacer. That means that in their model such oscillations can influence neither
the sign nor the magnitude of the spin-transfer torque. However, any discontinuity of the spin
current is unphysical, since the continuity of the wave functions and of their spatial derivatives
guarantees automatically the continuity of all the components of the spin current everywhere in
the layer structure. We thus conclude on the basis of our rigorous Keldysh formalism [1], which
naturally has the property that the spin current is continuous everywhere, that engineering of
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Figure 4. Spatial dependence of the parallel (x) component of spin current (a) and perpendicular
(y) component (b) for a half-metallic magnet.

the sign and magnitude of the spin-transfer torque components by the choice of the switching
magnet thickness is perfectly feasible.

There is, however, one case when the amplitude of spin current oscillations in the
switching magnet is small and the oscillations decay exponentially with the distance from the
spacer/switching magnet interface. This occurs when the exchange splitting� in the switching
magnet is so large that it becomes a half-metallic ferromagnet. The results for the profiles of the
parallel and perpendicular components of the spin current in a half-metallic switching magnet
are reproduced in figures 4(a) and (b).

It is clear that, in the case of a half-metallic switching magnet, no engineering of the spin-
transfer torque by varying the thickness of the magnet is possible. However, one should bear
in mind that transition metal magnets that are used in all experimental pillar structures are not
half-metallic and that the above special case is thus not applicable to real systems.

There are three points that remain to be clarified. The first is the physical interpretation of
our calculated oscillations of the spin current. Within the so-called standard model, it can be
shown [1] that the spin-transfer torque on any given atomic plane of the switching magnet is
proportional to the transverse spin induced by electrons incident from the spacer at an angle ψ
to the exchange field of the switching magnet, which is taken to be parallel to the z-direction.
The proportionality factor is the exchange splitting �. Within the standard model it follows
that electrons incident from the spacer precess in the exchange field of the switching magnet.
The x- and y-components of the transverse spin thus oscillate periodically as a function of
the distance from the spacer/switching magnet interface. Naturally, the oscillations of the two
transverse components of the precessing spin are just shifted in phase. The aforementioned
proportionality of the local spin-transfer torque to the local transverse spin thus implies that the
spin current also oscillates in the same manner. This interpretation is qualitatively the same as
that given earlier by the proponents of the standard model (see, e.g., [9]).

In section 2 we assumed in the discussion of the stability of steady states that the
dependence of the spin-transfer torque on the angle ψ between the magnetizations of the
switching and polarizing magnets is approximately sinusoidal. The angular dependences of
the two components of the torque, determined for the same set of parameters as in figure 3, are
shown in figure 5.

It can be seen that both torque components obey quite well a sinusoidal dependence on ψ
and, hence, the relations specified in equation (7) of section 2 are satisfied for our single-orbital
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Figure 5. The angle dependence of the two components of the spin-transfer torque for the same
parameters as in figure 3 and for a switching magnet of 20 atomic planes.

tight-binding model to a good approximation. Hence our insistence on the importance of the
negative sign of the ratio of the two torque components is highly relevant to the search for
zero-field microwave generation.

Finally, we have to clarify the significance of the total spin current, which is denoted in
figures 3 and 4 by broken lines. In a steady state the total torque acting on any atomic plane
of the switching magnet has to be zero. Since we assume that a uniaxial anisotropy in the
switching magnet is uniform across the thickness of the magnet, the anisotropy torque acting
on each atomic plane of the magnet must be constant. Since the anisotropy torque must be
compensated by a spin-transfer torque, the spin current in the switching magnet should drop
linearly across the magnet, as indicated by the broken lines in figures 3 and 4. However, it is
clear that this condition is far from being satisfied in the standard model adopted here. There is,
however, a simple explanation of this ‘paradox’. In order to bring the oscillatory spin current
into coincidence with the broken line, one needs to consider an additional internal spin current
arising from a slight twist of the magnetization in the switching magnet [1]. This internal
spin current corresponds to exchange coupling between neighbouring atomic planes. Since the
exchange stiffness of a typical magnet is large, only very small twists of magnetization between
neighbouring atomic planes are required to make up the difference between the oscillatory
spin current obtained in the standard model and the required straight line. Such a small
twist has a negligible influence on the spin current calculated in the standard model, i.e. the
curves presented in figures 3 and 4 can be taken as including the effect of a small twist of
magnetization. The sum of the current-induced spin current and the spin current due to a small
twist of the magnetization is then the total spin current, denoted by broken lines in figures 3
and 4.

4. Conclusions

There is considerable interest in designing devices for microwave generation which are based
on the oscillations of a magnetic layer driven by a spin-polarized current. It would be important
to obtain this effect in the absence of an applied magnetic field. The spin-transfer torque
which drives the magnet has two components, and it is shown that one simple route to achieve
microwave generation is to ensure that these components have opposite sign. Quantum-
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mechanical calculations are presented that show how this may be achieved by a suitable choice
of the oscillating magnet thickness.
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